341. Let X1,X2,……,Xn be a random sample from a density,,,, f(x ι θ) where θ is a value of the random variable Θwith known density gΘ(θ) Then the estimator ∏(θ) with…/ respect to the prior gΘ(θ) is define as_________________E[∏(θ)ιX1,X2,…..,Xn] is called?

A. Posterior Bay’s estimator
B. Minimax estimator
C. Bay’s estimator
D. Sufficient estimator

342. An estimator Q is an unbiased estimator of the population parameter Q if ___________________?

A. E(x) = µ
B. E(Q) =Q
C. E(Q) =Q
D. E(P) = P

343. Sample proportion P is __________ estimator?

A. Biased
B. Parameter
C. Unbiased
D. None of these

344. Sample variance S2 is unbiased estimator of population variance 26 because ________________?

A. E(S2) = s2
B. E(u) = X
C. E(P) = P
D. Ux = u

345. x=40 is estimator of _________________?

A. (U)
B. 6
C. Ux
D. 6/√n

346. If the conditional distribution of X1,X2,…..Xn given S=s, does not depends on θ, for any value of S=s the statistics S=s(X1,X2,…..Xn) is called______________?

A. Unbiased
B. Sufficient
C. Consistent
D. Efficient

347. A test is said to be most powerful test of size α, if_______________?

A. Among all other test of size α or less it has the largest power
B. Among all other test of size α or greater it has the largest 1 – α
C. Among all other test of size α or greater it has the smallest power
D. Among all other test of size α or greater it has the largest β

348. for two estimators T1=t1(X1,X2,….Xn) and T1=t1(X1,X2,….Xn) then estimators t1 is defined to be Rt1(θ)≤Rt2(θ) for all θ in Θ ?

A. Consistent estimator
B. Admissible estimator
C. Sufficient estimator
D. Minimax estimator

349. if Var(T2)_______________?

A. Efficient
B. Sufficient
C. Unbiased
D. Consistent

350. If E(θˆ)=θ, then θˆ is said to be_______________?

A. Unbiased
B. Consistent
C. Sufficient
D. Efficient